An overview of categorical probability theory

Ruben Van Belle

September 2022

Ru	ben	Van	Bel	le
----	-----	-----	-----	----

An overview of categorical probability theory

- What are the objects and morphisms of probability theory?
- (Incomplete) overview of the current literature.

What are *the* objects and morphisms of probability theory?
(Incomplete) overview of the current literature.

4 A >

Probability spaces?

• • • • • • • • • •

- Probability spaces?
- ② Random variables?

3/40

• • • • • • • • • •

- Probability spaces?
- ② Random variables?
- Markov kernels?

• • • • • • • • • •

- The category **Prob**:
 - objects: probability spaces $(\Omega, \mathcal{F}, \mathbb{P})$
 - morphisms: measure-preserving maps, i.e. measurable maps $f: \Omega_1 \to \Omega_2$ such that $\mathbb{P}_1 \circ f^{-1} = \mathbb{P}_2$.

- The category **Prob**:
 - objects: probability spaces $(\Omega, \mathcal{F}, \mathbb{P})$
 - ▶ morphisms: measure-preserving maps, i.e. measurable maps $f : \Omega_1 \to \Omega_2$ such that $\mathbb{P}_1 \circ f^{-1} = \mathbb{P}_2$.
- Prob does not have many (co)limits
 - In general no (co)product or equalizers.
 - ► There is no initial object (*unbounded randomness*).
 - There is a terminal objects and coequializers exist.

Ruben Van B

• (many couplings) For \mathbb{P}_1 and \mathbb{P}_2 on Ω , there exists many \mathbb{P} on Ω^2 such that:

 $\mathbb{P} \circ \pi_1^{-1} = \mathbb{P}_1$ and $\mathbb{P} \circ \pi_2^{-1} = \mathbb{P}_2$.

				_	
elle	An overview of categorical probability theory	Septembe	r 2022		5 / 40

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ●

• (many couplings) For \mathbb{P}_1 and \mathbb{P}_2 on Ω , there exists many \mathbb{P} on Ω^2 such that:

$$\mathbb{P} \circ \pi_1^{-1} = \mathbb{P}_1$$
 and $\mathbb{P} \circ \pi_2^{-1} = \mathbb{P}_2$.

But we want to talk about the interaction between stochastic events.

5/40

• • • • • • • • • • • •

• (many couplings) For \mathbb{P}_1 and \mathbb{P}_2 on Ω , there exists many \mathbb{P} on Ω^2 such that:

$$\mathbb{P} \circ \pi_1^{-1} = \mathbb{P}_1$$
 and $\mathbb{P} \circ \pi_2^{-1} = \mathbb{P}_2$.

But we want to talk about the **interaction** between stochastic events. We can not do this using probability spaces (e.g. it does not make sense to say that two probability spaces are independent).

• • • • • • • • • • • •

• (many couplings) For \mathbb{P}_1 and \mathbb{P}_2 on Ω , there exists many \mathbb{P} on Ω^2 such that:

$$\mathbb{P} \circ \pi_1^{-1} = \mathbb{P}_1$$
 and $\mathbb{P} \circ \pi_2^{-1} = \mathbb{P}_2$.

But we want to talk about the **interaction** between stochastic events. We can not do this using probability spaces (e.g. it does not make sense to say that two probability spaces are independent).

- Probability spaces are an important aspect of probability theory, but **not the main objects of interest**.
 - $\rightarrow~$ Probability theory \neq measure theory with measures of total mass 1

2. Random variables

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let *E* be a Polish space, a **random variable** is a measurable map $X : \Omega \to E$.

• bounded randomness

2. Random variables

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let *E* be a Polish space, a **random variable** is a measurable map $X : \Omega \to E$.

- bounded randomness
- Two random variables $X_1, X_2 : \Omega \to \mathbb{R}$, determine a random variable that describes their interaction:

$$(X_1, X_2): \Omega \to \mathbb{R}^2$$

2. Random variables

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let *E* be a Polish space, a **random variable** is a measurable map $X : \Omega \to E$.

- bounded randomness
- Two random variables $X_1, X_2 : \Omega \to \mathbb{R}$, determine a random variable that describes their interaction:

$$(X_1, X_2) : \Omega \to \mathbb{R}^2$$

- This does not look very categorical:
 - The domain and codomain seem of a different type.
 - What are morphisms between random variables? \rightarrow order, martingale relation?

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• A random variable $X : \Omega \to E$ induces a probability measure on E, namely $\mathbb{P} \circ X^{-1}$.

イロト イヨト イヨト

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- A random variable $X : \Omega \to E$ induces a probability measure on E, namely $\mathbb{P} \circ X^{-1}$. We are strictly losing information.
- A random variable $X : \Omega \to \mathbb{R}$ can be interpreted as a **density** function. It induces a measure on Ω by

 $A \mapsto \mathbb{E}[X1_A].$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- A random variable $X : \Omega \to E$ induces a probability measure on E, namely $\mathbb{P} \circ X^{-1}$. We are strictly losing information.
- A random variable $X : \Omega \to \mathbb{R}$ can be interpreted as a **density** function. It induces a measure on Ω by

$$A\mapsto \mathbb{E}[X1_A].$$

This measure is absolutely continuous with respect to \mathbb{P} . Every such measure is of this form (*Radon-Nikodym theorem*).

Let Ω_1 and Ω_2 be a measurable spaces and let $\mathcal{G}\Omega_2$ be the space of probability measures on Ω_2 . A **Markov Kernel** is a measurable map

$$f: \Omega_1 \to \mathcal{G}\Omega_2.$$

• For Markov kernels $f_1 : \Omega_1 \to \mathcal{G}\Omega_2$ and $f_2 : \Omega_2 \to \mathcal{G}\Omega_3$, there is a Markov kernel $f : \Omega_1 \to \mathcal{G}\Omega_3$ defined by

$$f(\omega)(A) = \int_{\Omega_2} f_2(\omega_2)(A) f_1(\omega_1)(\mathrm{d}\omega_2),$$

for all $\omega_1 \in \Omega_1$ and measurable $A \subseteq \Omega_3$.

(日) (四) (日) (日) (日)

Let Ω_1 and Ω_2 be a measurable spaces and let $\mathcal{G}\Omega_2$ be the space of probability measures on Ω_2 . A **Markov Kernel** is a measurable map

$$f: \Omega_1 \to \mathcal{G}\Omega_2.$$

• For Markov kernels $f_1 : \Omega_1 \to \mathcal{G}\Omega_2$ and $f_2 : \Omega_2 \to \mathcal{G}\Omega_3$, there is a Markov kernel $f : \Omega_1 \to \mathcal{G}\Omega_3$ defined by

$$f(\omega)(A) = \int_{\Omega_2} f_2(\omega_2)(A) f_1(\omega_1)(\mathrm{d}\omega_2),$$

for all $\omega_1 \in \Omega_1$ and measurable $A \subseteq \Omega_3$.

• Describes interactions between different stochastic events.

3. Markov kernels

• For a Markov kernel $f: \Omega_1 \to \mathcal{G}\Omega_2$ and a probability measure \mathbb{P}_1 on Ω_1 , there is a probability measure \mathbb{P} on $\Omega_1 \times \Omega_2$ such that

$$\mathbb{P}(A \times B) = \int_A f(\omega)(B)\mathbb{P}_1(\mathrm{d}\omega),$$

for all measurable $A \subseteq \Omega_1$ and $B \subseteq \Omega_2$.

3. Markov kernels

• For a Markov kernel $f: \Omega_1 \to \mathcal{G}\Omega_2$ and a probability measure \mathbb{P}_1 on Ω_1 , there is a probability measure \mathbb{P} on $\Omega_1 \times \Omega_2$ such that

$$\mathbb{P}(A \times B) = \int_A f(\omega)(B)\mathbb{P}_1(\mathrm{d}\omega),$$

for all measurable $A \subseteq \Omega_1$ and $B \subseteq \Omega_2$. In general, not every probability measure on $\Omega_1 \times \Omega_2$ is of this form (regular conditional probabilities).

イロト イヨト イヨト

3. Markov kernels

 For a Markov kernel f : Ω₁ → GΩ₂ and a probability measure P₁ on Ω₁, there is a probability measure P on Ω₁ × Ω₂ such that

$$\mathbb{P}(A \times B) = \int_A f(\omega)(B)\mathbb{P}_1(\mathrm{d}\omega),$$

for all measurable $A \subseteq \Omega_1$ and $B \subseteq \Omega_2$. In general, not every probability measure on $\Omega_1 \times \Omega_2$ is of this form (regular conditional probabilities).

• Let $\mathbb P$ be a probability measure on $\Omega_1\times\Omega_2.$ The assignment

$$A \mapsto \mathbb{E}[\mathbb{1}_{\Omega_1 \times A} \mid \pi^{-1}(\mathcal{F}_1)]$$

is $\mathbb{P} \circ \pi_1^{-1}$ -almost surely σ -additive.

Conclusion

	٩	(日) (日) (日) (日)	Ξ.	596
Ruben Van Belle	An overview of categorical probability theory	September 2022		10 / 40

An overview of categorical probability theory

Ruben Van

Belle	An overview of categorical probability theory	September 202	2	11 / 40

化口水 化固水 化压水 化压水

Where do probability monads come from?

Ruben	Van	Belle	
-------	-----	-------	--

.⊒ →

・ロト ・ 日 ・ ・ ヨ ・ ・

Lawvere: probabilitstic mappings (1962)

Discusses a category of Markov kernels.

Rub

an Van Rollo	An evenuious of cotogonical probability theory	Sentember 2022	12 / 40
en van Dene	All overview of categorical probability theory	September 2022	13/40

Lawvere: probabilitstic mappings (1962)

Discusses a category of Markov kernels.

- \bullet Lawvere introduces the category of probabilistic mappings $\mathcal{P}:$
 - objects: measurable spaces (Ω, \mathcal{F}) ,
 - morphisms: Markov kernels ('probabilistic mappings') $f: \Omega_1 \to \mathcal{G}\Omega_2$,
 - composition: composition of Markov kernels

Lawvere: probabilitstic mappings (1962)

Discusses a category of Markov kernels.

 \bullet Lawvere introduces the category of probabilistic mappings $\mathcal{P}:$

- objects: measurable spaces (Ω, \mathcal{F}) ,
- morphisms: Markov kernels ('probabilistic mappings') $f : \Omega_1 \to \mathcal{G}\Omega_2$,
- composition: composition of Markov kernels

• Define $\Phi:\mathcal{P}^{\mathbb{N}}\to\mathcal{P}^{\mathbb{N}}$ by

$$\Phi((\Omega_n)_n)_m := \prod_{k < m} \Omega_k$$

A discrete stochastic process is a object Ω in $\mathcal{P}^{\mathbb{N}}$ together with a morphism $f : \Phi(\Omega) \to \Omega$ in $\mathcal{P}^{\mathbb{N}}$, i.e. a collection of Markov kernels

$$\left(f_m:\prod_{k< m}\Omega_k\to \mathcal{G}\Omega_m\right)_m$$

イロト 不得 トイヨト イヨト

• A morphism of discrete stochastic processes from (Ω^1, f^1) to (Ω^2, f^2) is a morphism $g : \Omega^1 \to \Omega^2$ in $\mathcal{P}^{\mathbb{N}}$ such that

$$g \circ f = f' \circ \Phi(g).$$

Let **Stoch** be the category of stochastic processes.

elle	An overview of categorical probability theory				Se	oteml	ber 2	2022		14 / 40	
		• 1	•	۲		5.2	1	- P		*) 4 (*	

A morphism of discrete stochastic processes from (Ω¹, f¹) to (Ω², f²) is a morphism g : Ω¹ → Ω² in P^N such that

$$g \circ f = f' \circ \Phi(g).$$

Let **Stoch** be the category of stochastic processes.

Let N be the monoid of natural numbers, considered as a category. A discrete Markov process is a functor N → P, i.e. a measurable space Ω together with a Markov kernel f : Ω → GΩ. Let Mark be the category of disrete Markov processes, i.e. [N, P].

• A morphism of discrete stochastic processes from (Ω^1, f^1) to (Ω^2, f^2) is a morphism $g : \Omega^1 \to \Omega^2$ in $\mathcal{P}^{\mathbb{N}}$ such that

$$g \circ f = f' \circ \Phi(g).$$

Let **Stoch** be the category of stochastic processes.

- Let N be the monoid of natural numbers, considered as a category. A discrete Markov process is a functor N → P, i.e. a measurable space Ω together with a Markov kernel f : Ω → GΩ. Let Mark be the category of disrete Markov processes, i.e. [N, P].
- Question: Does the inclusion Mark \rightarrow Stoch have adjoints?

Giry: A categorical approach to probability theory (1982)

In this paper, Giry recognizes Lawvere's category of probabilistic mappings as the Kleisli category of a certain monad (*Giry monad*).

In this paper, Giry recognizes Lawvere's category of probabilistic mappings as the Kleisli category of a certain monad (*Giry monad*).

• For a measurable space $\Omega.$ Let $\mathcal{G}\Omega$ be the set of probability measures on $\Omega.$

In this paper, Giry recognizes Lawvere's category of probabilistic mappings as the Kleisli category of a certain monad (*Giry monad*).

• For a measurable space Ω . Let $\mathcal{G}\Omega$ be the **set of probability measures** on Ω . For a measurable subset $A \subseteq \Omega$, we have an evaluation map

$$\mathsf{ev}_{\mathcal{A}}:\mathcal{G}\Omega \to [0,1].$$

 $\mathcal{G}\Omega$ becomes a measurable spaces by endowing it with the $\sigma\text{-algbra}$ generated by the evaluation maps.
In this paper, Giry recognizes Lawvere's category of probabilistic mappings as the Kleisli category of a certain monad (*Giry monad*).

• For a measurable space Ω . Let $\mathcal{G}\Omega$ be the **set of probability measures** on Ω . For a measurable subset $A \subseteq \Omega$, we have an evaluation map

$$\mathsf{ev}_{\mathcal{A}}:\mathcal{G}\Omega
ightarrow [0,1].$$

 $\mathcal{G}\Omega$ becomes a measurable spaces by endowing it with the $\sigma\text{-algbra}$ generated by the evaluation maps.

For a measurable map $f : \Omega_1 \to \Omega_2$, **pushing forward** along f defines a measurable map $\mathcal{G}f : \mathcal{G}\Omega_1 \to \mathcal{G}\Omega_2$.

イロト イヨト イヨト

In this paper, Giry recognizes Lawvere's category of probabilistic mappings as the Kleisli category of a certain monad (*Giry monad*).

• For a measurable space Ω . Let $\mathcal{G}\Omega$ be the **set of probability measures** on Ω . For a measurable subset $A \subseteq \Omega$, we have an evaluation map

$$\mathsf{ev}_{\mathcal{A}}:\mathcal{G}\Omega \to [0,1].$$

 $\mathcal{G}\Omega$ becomes a measurable spaces by endowing it with the $\sigma\text{-algbra}$ generated by the evaluation maps.

For a measurable map $f: \Omega_1 \to \Omega_2$, **pushing forward** along f defines a measurable map $\mathcal{G}f: \mathcal{G}\Omega_1 \to \mathcal{G}\Omega_2$.

This gives an endofunctor \mathcal{G} : Mble \rightarrow Mble.

イロト イヨト イヨト

$$\mu_{\Omega}(\mathbf{P})(A) := \int_{\lambda \in \mathcal{G}\Omega} \lambda(A) \mathbf{P}(\mathrm{d}\lambda),$$

for all $\mathbf{P} \in \mathcal{GG}\Omega$ and measurable subsets $A \subseteq \Omega$.

Ruben Var

Belle	An overview of categorical probability theory	September 2022	16 / 40
Belle	An overview of categorical probability theory	September 2022	10/40

オロト オロト オヨトオ

H 1

$$\mu_{\Omega}(\mathbf{P})(A) := \int_{\lambda \in \mathcal{G}\Omega} \lambda(A) \mathbf{P}(\mathrm{d}\lambda),$$

for all $\mathbf{P} \in \mathcal{GG}\Omega$ and measurable subsets $A \subseteq \Omega$.

An overview of ca

• We have a map $\eta_{\Omega}: \Omega \to \mathcal{G}\Omega$:

$$\eta_{\Omega}(\omega) := \delta_{\omega},$$

for all $\omega \in \Omega$.

egorical probability theory	September 2022	16 / 40

$$\mu_{\Omega}(\mathbf{P})(A) := \int_{\lambda \in \mathcal{G}\Omega} \lambda(A) \mathbf{P}(\mathrm{d}\lambda),$$

for all $\mathbf{P} \in \mathcal{GG}\Omega$ and measurable subsets $A \subseteq \Omega$.

• We have a map $\eta_{\Omega} : \Omega \to \mathcal{G}\Omega$:

$$\eta_{\Omega}(\omega) := \delta_{\omega},$$

for all $\omega \in \Omega$.

• These form natural transformation $\mu : \mathcal{GG} \to \mathcal{G}$ and $\eta : 1_{\text{Mble}} \to \mathcal{G}$ and (\mathcal{G}, μ, η) forms a monad, the Giry monad.

16/40

イロト イヨト イヨト

$$\mu_{\Omega}(\mathbf{P})(A) := \int_{\lambda \in \mathcal{G}\Omega} \lambda(A) \mathbf{P}(\mathrm{d}\lambda),$$

for all $\mathbf{P} \in \mathcal{GG}\Omega$ and measurable subsets $A \subseteq \Omega$.

• We have a map $\eta_{\Omega} : \Omega \to \mathcal{G}\Omega$:

$$\eta_{\Omega}(\omega) := \delta_{\omega},$$

for all $\omega \in \Omega$.

- These form natural transformation $\mu : \mathcal{GG} \to \mathcal{G}$ and $\eta : 1_{\text{Mble}} \to \mathcal{G}$ and (\mathcal{G}, μ, η) forms a monad, the Giry monad.
- Lawvere's category of probabilistic mappings is the Kleisli category of the Giry monad.

$$\mu_{\Omega}(\mathbf{P})(A) := \int_{\lambda \in \mathcal{G}\Omega} \lambda(A) \mathbf{P}(\mathrm{d}\lambda),$$

for all $\mathbf{P} \in \mathcal{GG}\Omega$ and measurable subsets $A \subseteq \Omega$.

• We have a map $\eta_{\Omega} : \Omega \to \mathcal{G}\Omega$:

$$\eta_{\Omega}(\omega) := \delta_{\omega},$$

for all $\omega \in \Omega$.

- These form natural transformation $\mu : \mathcal{GG} \to \mathcal{G}$ and $\eta : 1_{\text{Mble}} \to \mathcal{G}$ and (\mathcal{G}, μ, η) forms a monad, the Giry monad.
- Lawvere's category of probabilistic mappings is the Kleisli category of the Giry monad.
- Giry also introduces a monad on **Pol**, the category of Polish spaces and continuous functions.

 The Kolmogorov extension problem: Let (Ω_i)_{i∈I} be a collection of measurable spaces. Consider a probability measure P_J on Π_{j∈J} Ω_j for every finite set J ⊆ I. Suppose that this collection is *consistent*.

Does there exist a probability measure \mathbb{P} on $\prod_{i \in I} \Omega_i$ such that

$$\mathbb{P}\circ\pi_J^{-1}=\mathbb{P}_J,$$

for all finite $J \subseteq I$?

<u>Answer</u>: sometimes. (*Kolmorogov extension problem*)

		2.40
An overview of categorical probability theory	September 2022	17 / 40

 The Kolmogorov extension problem: Let (Ω_i)_{i∈I} be a collection of measurable spaces. Consider a probability measure P_J on Π_{j∈J} Ω_j for every finite set J ⊆ I. Suppose that this collection is *consistent*.

Does there exist a probability measure \mathbb{P} on $\prod_{i \in I} \Omega_i$ such that

$$\mathbb{P}\circ\pi_J^{-1}=\mathbb{P}_J,$$

for all finite $J \subseteq I$?

<u>Answer</u>: sometimes. (*Kolmorogov extension problem*)

Giry translates this problem as follows:

'Does the functor $\textbf{Mble} \rightarrow \textbf{Mble}_{\mathcal{G}}$ preserve cofiltered limits?'.

Several (technical) conditions are given for which this is the case. As a corollary the *lonescu-Tulcea theorem* is discussed.

17/40

 Lawvere expressed discrete Markov processes using P(= Mble_G). In probability theory, we also want to talk about continuous stochastic processes.

イロト イヨト イヨト イ

Lawvere expressed *discrete* Markov processes using *P*(= Mble_G). In probability theory, we also want to talk about *continuous* stochastic processes.
 For this, Giry introduced random topological actions. Let *C* be a category internal to Pol. A random topological action is functor *C* → Pol_G satisfying certain (continuity) conditions.

4 A I

Swirszcz: Monadic functors and convexity (1973)

Studies which monads have the category of convex spaces as algebras.

Swirszcz: Monadic functors and convexity (1973)

Studies which monads have the category of convex spaces as algebras.

- The category **Conv**:
 - objects: convex subsets of vector spaces,
 - morphims: affine maps

Ruben	Van	Belle	
-------	-----	-------	--

• • • • • • • • • • • •

Swirszcz: Monadic functors and convexity (1973)

Studies which monads have the category of convex spaces as algebras.

- The category **Conv**:
 - objects: convex subsets of vector spaces,
 - morphims: affine maps
- \bullet The forgetful functor $\textbf{Conv} \rightarrow \textbf{Set}$ is not monadic.

- objects: compact convex subsets of locally convex topological vector spaces,
- morphisms: affine maps

- The category CompConv:
 - objects: compact convex subsets of locally convex topological vector spaces,
 - morphisms: affine maps
- The forgetful functor $CompConv \rightarrow Comp$ is monadic.

- The category CompConv:
 - objects: compact convex subsets of locally convex topological vector spaces,
 - morphisms: affine maps
- The forgetful functor $CompConv \rightarrow Comp$ is monadic.

The corresponding monad is the *Radon monad*, that sends a compact Hausdorff space X to the space $\mathcal{R}X$ of Radon probability measures on X.

- objects: compact convex subsets of locally convex topological vector spaces,
- morphisms: affine maps
- The forgetful functor $CompConv \rightarrow Comp$ is monadic.

The corresponding monad is the *Radon monad*, that sends a compact Hausdorff space X to the space $\mathcal{R}X$ of Radon probability measures on X.

The algebra structure on a compact convex space X is given by the *barycenter map* $b : \mathcal{R}X \to X$,

- objects: compact convex subsets of locally convex topological vector spaces,
- morphisms: affine maps
- The forgetful functor $CompConv \rightarrow Comp$ is monadic.

The corresponding monad is the *Radon monad*, that sends a compact Hausdorff space X to the space $\mathcal{R}X$ of Radon probability measures on X.

The algebra structure on a compact convex space X is given by the *barycenter map* $b : \mathcal{R}X \to X$, which sends a Radon probability measure \mathbb{P} to the unique element $x \in X$ such that

$$f(x) = \int f d\mathbb{P}$$

for all continuous affine maps $f: X \to \mathbb{R}$.

- objects: compact convex subsets of locally convex topological vector spaces,
- morphisms: affine maps
- The forgetful functor $CompConv \rightarrow Comp$ is monadic.

The corresponding monad is the *Radon monad*, that sends a compact Hausdorff space X to the space $\mathcal{R}X$ of Radon probability measures on X.

The algebra structure on a compact convex space X is given by the *barycenter map* $b : \mathcal{R}X \to X$, which sends a Radon probability measure \mathbb{P} to the unique element $x \in X$ such that

$$f(x) = \int f d\mathbb{P}$$

for all continuous affine maps $f: X \to \mathbb{R}$.

The results uses a monadicity theorem (Linton).

- objects: compact convex subsets of locally convex topological vector spaces,
- morphisms: affine maps

- objects: compact convex subsets of locally convex topological vector spaces,
- morphisms: affine maps
- The forgetful functor **CompConv** \rightarrow **Set** *is* monadic.

イロト イヨト イヨト

- The category CompConv:
 - objects: compact convex subsets of locally convex topological vector spaces,
 - morphisms: affine maps
- The forgetful functor $\textbf{CompConv} \rightarrow \textbf{Set} \textit{ is monadic.}$

The corresponding monad on **Set** sends a set X to the set of Radon measures on the Čech-Stone compactification of X.

4 A I

Since then, many variations on the Giry monad have been studied and are referred to as *probability monads*.

• Distribution monad: A probability monad on **Set**, sending every set X to

{finitely supported probability measures on X}.

Since then, many variations on the Giry monad have been studied and are referred to as *probability monads*.

• Distribution monad: A probability monad on Set, sending every set X to

{finitely supported probability measures on X }.

• Monads of valuations on topological spaces and locales (Fritz, Perrone, Vickers)

Since then, many variations on the Giry monad have been studied and are referred to as *probability monads*.

• Distribution monad: A probability monad on Set, sending every set X to

{finitely supported probability measures on X }.

- Monads of valuations on topological spaces and locales (Fritz, Perrone, Vickers)
- Monads of subprobabilities/stochastic relations (Panangaden)

• *Kantorovich monad* (van Breugel, Fritz, Perrone): A probability monad on **CMet**₁, the category of complete metric spaces and 1-Lipschitz maps. A complete metric space is send to its *Kantorovich space*

• *Kantorovich monad* (van Breugel, Fritz, Perrone): A probability monad on **CMet**₁, the category of complete metric spaces and 1-Lipschitz maps. A complete metric space is send to its *Kantorovich space*

A Radon probability measure ${\mathbb P}$ has finite moment if

$$\int d(x,y)\mathbb{P}(\mathrm{d} x)\mathbb{P}(\mathrm{d} y) < \infty.$$

		2.40
An overview of categorical probability theory	September 2022	25 / 40

• *Kantorovich monad* (van Breugel, Fritz, Perrone): A probability monad on **CMet**₁, the category of complete metric spaces and 1-Lipschitz maps. A complete metric space is send to its *Kantorovich space*

A Radon probability measure ${\mathbb P}$ has finite moment if

$$\int d(x,y)\mathbb{P}(\mathrm{d} x)\mathbb{P}(\mathrm{d} y) < \infty.$$

The **Kantorovich space** of a complete metric space X is the complete metric space of all Radon probability measure that have finite moment. The metric is given by the *Wasserstein distance*:

$$d_W(\mathbb{P}_1,\mathbb{P}_1) = \sup\left\{\int f \mathrm{d}\mathbb{P}_1 - \int f \mathrm{d}\mathbb{P}_2 \mid f: X \to \mathbb{R} \text{ 1-Lipschitz}\right\}$$

for all Radon probability measure of finite moment \mathbb{P}_1 and \mathbb{P}_2 .

• • • • • • • • • • • •

E.g. the finitely supported probability measures are dense in the Kantorovich space.

• • • • • • • • • • • •

E.g. the finitely supported probability measures are dense in the Kantorovich space.

• Many *other metric variations*: ordered metric spaces, compact metric spaces, general Lipschitz maps,

イロト イヨト イヨト イヨト

E.g. the finitely supported probability measures are dense in the Kantorovich space.

- Many *other metric variations*: ordered metric spaces, compact metric spaces, general Lipschitz maps,
- Many probability monads are *codensity monads* of functor of probability measures on *countable* spaces.

What are the algebras of probability monads?

• • • • • • • • • • • •
The algebras of probability monads

From Swirszcz, we already know that algebras of probability monads should have a *convex structure* and the structure map should give a *barycenter* or *centre of mass*.

• Example: Define a map $\alpha:\mathcal{G}[\mathbf{0},\infty]\to [\mathbf{0},\infty]$ by

$$\mathbb{P}\mapsto \int_0^\infty x\mathbb{P}(\mathrm{d} x).$$

• • • • • • • • • •

The algebras of probability monads

From Swirszcz, we already know that algebras of probability monads should have a *convex structure* and the structure map should give a *barycenter* or *centre of mass*.

• Example: Define a map $\alpha:\mathcal{G}[\mathbf{0},\infty]\to [\mathbf{0},\infty]$ by

$$\mathbb{P}\mapsto \int_0^\infty x\mathbb{P}(\mathrm{d} x).$$

•
$$\alpha(\delta_{x_0}) = \int x \delta_{x_0}(\mathrm{d}x) = x_0 \text{ for all } x_0 \in [0, \infty],$$

The algebras of probability monads

From Swirszcz, we already know that algebras of probability monads should have a *convex structure* and the structure map should give a *barycenter* or *centre of mass*.

• Example: Define a map $\alpha:\mathcal{G}[\mathbf{0},\infty]\to [\mathbf{0},\infty]$ by

$$\mathbb{P}\mapsto \int_0^\infty x \mathbb{P}(\mathrm{d} x).$$

•
$$\alpha(\delta_{x_0}) = \int x \delta_{x_0}(dx) = x_0 \text{ for all } x_0 \in [0, \infty],$$

• For $\mathbf{P} \in \mathcal{G}[0, \infty],$

$$\alpha(\mu(\mathbf{P})) = \int_0^\infty x\mu(\mathbf{P})(\mathrm{d}x) = \int_\lambda \int_0^\infty x\lambda(\mathrm{d}x)\mathbf{P}(\mathrm{d}\lambda) = \int_\lambda \alpha(\lambda)\mathbf{P}(\mathrm{d}) = \alpha(\mathbf{P}\circ\alpha^{-1})$$

A D N A B N A B

$$\mathbb{E}[X] = \alpha(\mathbb{P} \circ X^{-1}).$$

			2.40
Ruben Van Belle	An overview of categorical probability theory	September 2022	29 / 40

$$\mathbb{E}[X] = \alpha(\mathbb{P} \circ X^{-1}).$$

 \rightarrow Random variables should take values in *algebras of probability monads*.

	4	다 (월) (문) (문) [୬୯୯
/an Belle	An overview of categorical probability theory	September 2022	29 / 40

Ruben \

$$\mathbb{E}[X] = \alpha(\mathbb{P} \circ X^{-1}).$$

 \rightarrow Random variables should take values in *algebras of probability monads*.

• Distribution monad: The algebras are convex spaces (in the sense of Stone).

$$\mathbb{E}[X] = \alpha(\mathbb{P} \circ X^{-1}).$$

 \rightarrow Random variables should take values in *algebras of probability monads*.

• Distribution monad: The algebras are convex spaces (in the sense of Stone).

• Given a convex space X, we can define $\alpha\left(\sum_{n=1}^{N} \alpha_n \delta_{x_n}\right) = \sum_{n=1}^{N} \alpha_n x_n$.

イロト イヨト イヨト

$$\mathbb{E}[X] = \alpha(\mathbb{P} \circ X^{-1}).$$

 \rightarrow Random variables should take values in *algebras of probability monads*.

• Distribution monad: The algebras are convex spaces (in the sense of Stone).

- Given a convex space X, we can define $\alpha\left(\sum_{n=1}^{N} \alpha_n \delta_{x_n}\right) = \sum_{n=1}^{N} \alpha_n x_n$.
- Give an algebra A, we define a convex structure by $\lambda a + (1 \lambda)b := \alpha(\lambda \delta_a + (1 \lambda)\delta_b).$

$$\mathbb{E}[X] = \alpha(\mathbb{P} \circ X^{-1}).$$

 \rightarrow Random variables should take values in algebras of probability monads.

• Distribution monad: The algebras are convex spaces (in the sense of Stone).

- Given a convex space X, we can define $\alpha\left(\sum_{n=1}^{N} \alpha_n \delta_{x_n}\right) = \sum_{n=1}^{N} \alpha_n x_n$.
- Give an algebra A, we define a convex structure by $\lambda a + (1 \lambda)b := \alpha(\lambda \delta_a + (1 \lambda)\delta_b).$
- *Radon monad*: The algebras are compact convex subsets of locally convex topological vector spaces. (Swirszcz)

$$\mathbb{E}[X] = \alpha(\mathbb{P} \circ X^{-1}).$$

 \rightarrow Random variables should take values in algebras of probability monads.

• Distribution monad: The algebras are convex spaces (in the sense of Stone).

- Given a convex space X, we can define $\alpha\left(\sum_{n=1}^{N} \alpha_n \delta_{x_n}\right) = \sum_{n=1}^{N} \alpha_n x_n$.
- Give an algebra A, we define a convex structure by $\lambda a + (1 \lambda)b := \alpha(\lambda \delta_a + (1 \lambda)\delta_b).$
- *Radon monad*: The algebras are compact convex subsets of locally convex topological vector spaces. (Swirszcz)
- *Kantorovich monad*: The algebras are closed convex subsets of Banach spaces. (Perrone, Fritz)

$$\mathbb{E}[X] = \alpha(\mathbb{P} \circ X^{-1}).$$

 \rightarrow Random variables should take values in algebras of probability monads.

• Distribution monad: The algebras are convex spaces (in the sense of Stone).

- Given a convex space X, we can define $\alpha\left(\sum_{n=1}^{N} \alpha_n \delta_{x_n}\right) = \sum_{n=1}^{N} \alpha_n x_n$.
- Give an algebra A, we define a convex structure by $\lambda a + (1 \lambda)b := \alpha(\lambda \delta_a + (1 \lambda)\delta_b).$
- *Radon monad*: The algebras are compact convex subsets of locally convex topological vector spaces. (Swirszcz)
- *Kantorovich monad*: The algebras are closed convex subsets of Banach spaces. (Perrone, Fritz)
- Giry monad: more difficult! (Dobberkat, Sturtz)

イロト 不得 トイヨト イヨト

Perrone: partial evaluations

Conditional expectation: Let X : (Ω, F, ℙ) → ℝ be an integrable random variable and let G ⊆ F be a sub-σ-algebra.

Perrone: partial evaluations

• Conditional expectation: Let $X : (\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be an integrable random variable and let $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ -algebra.

 $\mathbb{E}[X \mid \mathcal{G}] : (\Omega, \mathcal{G}, \mathbb{P} \mid_{\mathcal{G}}) \to \mathbb{R}$

is the \mathbb{P} -almost surely unique random variable such that

 $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]1_A] = \mathbb{E}[X1_A],$

for all $A \in \mathcal{G}$.

Conditional expectation: Let X : (Ω, F, P) → R be an integrable random variable and let G ⊆ F be a sub-σ-algebra.

 $\mathbb{E}[X \mid \mathcal{G}] : (\Omega, \mathcal{G}, \mathbb{P} \mid_{\mathcal{G}}) \to \mathbb{R}$

is the $\mathbb P\text{-}\mathsf{almost}$ surely unique random variable such that

$$\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]1_A] = \mathbb{E}[X1_A],$$

for all $A \in \mathcal{G}$.

• Let (A, α) be an algebra of a probability monad T and let \mathbb{P}_1 and \mathbb{P}_2 be in *TA*. Then \mathbb{P}_2 is a partial evaluation of \mathbb{P}_1 if there exists $\mathbf{P} \in TTA$ such that

$$\mathbf{P} \circ \alpha^{-1} = \mathbb{P}_1$$
 and $\mu_A(\mathbf{P}) = \mathbb{P}_2$.

• *Example*: $\mathbb{P} \mid_{\mathcal{G}} \circ \mathbb{E}[X \mid \mathcal{G}]^{-1}$ is a partial evaluation of $\mathbb{P} \circ X^{-1}$.

Example: P |_G ◦E[X | G]⁻¹ is a partial evaluation of P ◦ X⁻¹. Moreover, every P₁, P₂ in *TA* such that P₂ is a partial evaluation of P₁ are of this form for some probability space (Ω, F, P), sub-σ-algebra G ⊆ F and random variable X : (Ω, F, P) → R. (Perrone)

31 / 40

(日) (四) (日) (日) (日)

Kleisli categories of probability monads and Markov categories

Belle	An overview of categorical probability theory	September 2022	32 / 40
	•	ロトス団とスピトスピトーピー	590

イロト イヨト イヨト

For measurable spaces Ω_1 and Ω_2 , we have morphims

 $\mathcal{G}\Omega_1 imes \mathcal{G}\Omega_2 o \mathcal{G}(\Omega_1 imes \Omega_2)$

by sending $(\mathbb{P}_1, \mathbb{P}_2)$ to $\mathbb{P}_1 \otimes \mathbb{P}_2$.

For measurable spaces Ω_1 and $\Omega_2,$ we have morphims

 $\mathcal{G}\Omega_1 imes \mathcal{G}\Omega_2 o \mathcal{G}(\Omega_1 imes \Omega_2)$

by sending $(\mathbb{P}_1, \mathbb{P}_2)$ to $\mathbb{P}_1 \otimes \mathbb{P}_2$. This makes the Giry monad into a *commutative monad*.

Therefore the Kleisli category of the probability monad inherits the *symmetric* (*semicartesian*) *monoidal* structure on **Mble**.

For measurable spaces Ω_1 and Ω_2 , we have morphims

 $\mathcal{G}\Omega_1 imes \mathcal{G}\Omega_2 o \mathcal{G}(\Omega_1 imes \Omega_2)$

by sending $(\mathbb{P}_1, \mathbb{P}_2)$ to $\mathbb{P}_1 \otimes \mathbb{P}_2$. This makes the Giry monad into a *commutative* monad.

Therefore the Kleisli category of the probability monad inherits the *symmetric* (*semicartesian*) *monoidal* structure on **Mble**.

There are similar constructions for other probability monads.

イロト イヨト イヨト

Let Ω be a measurable space. Every objects has a canonical *commutative* comonoid structure:

• The comultiplication $\Omega \to \mathcal{G}(\Omega \times \Omega)$ is defined by

$$\omega \mapsto \delta_{(\omega,\omega)}.$$

• The *conuit* is the unique map $X \to \mathcal{G}\mathbf{1}$.

Let Ω be a measurable space. Every objects has a canonical *commutative comonoid* structure:

• The comultiplication $\Omega \to \mathcal{G}(\Omega \times \Omega)$ is defined by

$$\omega \mapsto \delta_{(\omega,\omega)}.$$

• The *conuit* is the unique map $X \to \mathcal{G}\mathbf{1}$.

A **Markov category** is a symmetric monoidal category with a comultiplication structure on every object,

(日) (四) (日) (日) (日)

Let Ω be a measurable space. Every objects has a canonical *commutative comonoid* structure:

• The comultiplication $\Omega \to \mathcal{G}(\Omega \times \Omega)$ is defined by

$$\omega \mapsto \delta_{(\omega,\omega)}.$$

• The *conuit* is the unique map $X \to \mathcal{G}\mathbf{1}$.

A **Markov category** is a symmetric monoidal category with a comultiplication structure on every object, such that the counits form a natural transformation.

(日) (四) (日) (日) (日)

A lot has been written about Markov categories, including versions of the

- de Finetti theorem,
- certain 0-1 laws,
- the ergodic decomposition theorem

in Markov categories (Fritz, Perrone, Moss, ...).

A lot has been written about Markov categories, including versions of the

- de Finetti theorem,
- certain 0-1 laws,
- the ergodic decomposition theorem

in Markov categories (Fritz, Perrone, Moss, ...).

We will look at some important definitions in concepts in Markov categories:

- deterministic morphism,
- almost surely equal morphisms
- conditionals
- Kolmogorov products

A D N A B N A B

Let $\ensuremath{\mathcal{C}}$ be a Markov category:

• A morphism $f : A \rightarrow X$ is **deterministic** if

Let \mathcal{C} be a Markov category:

• A morphism $f : A \rightarrow X$ is **deterministic** if

For $Mble_{\mathcal{G}}$, this means

$$f(a)(A)f(a)(B) = f(a)(A \cap B)$$

for all $a \in A$ and measurable $A, B \subseteq X$.

• • • • • • • • • •

Let $\ensuremath{\mathcal{C}}$ be a Markov category:

• A morphism $f : A \rightarrow X$ is **deterministic** if

For $Mble_{\mathcal{G}}$, this means

$$f(a)(A)f(a)(B) = f(a)(A \cap B)$$

for all $a \in A$ and measurable $A, B \subseteq X$. In particular,

$$f(a)(A)^2 = f(a)(A)$$

and therefore $f(a)(A) \in \{0,1\}$.

• A representable Markov category is a Markov category that is the Kleisli category of some monad on C_{det} , the category with the same objects as C and *deterministic* morphisms

Ruben '	∕an	Belle
---------	-----	-------

• • • • • • • • • • •

• Let $m: I \to X$ and $f, g: A \to X$ in C, then f and g are m-almost surely equal if

an Belle	An overview of categorical probability theory

Ruben V

・ロット (日) ・ (日) ・ (

• Let $m: I \to X$ and $f, g: A \to X$ in C, then f and g are m-almost surely equal if

In $Mble_{\mathcal{G}}$, this means that

$$\int_{B} f(a)(A)m(\mathrm{d} a) = \int_{B} g(a)(A)m(\mathrm{d} a)$$

for all $a \in A$ and measurable $A, B \subseteq X$. Therefore,

 $f(\cdot)(A) = g(\cdot)(A)$ m - almost surely.

37 / 40

イロト イヨト イヨト

Conditionals in Markov categories

A Markov category **has conditionals** if for every $f : A \to X \otimes Y$, there exists $f \mid_X : X \otimes A \to Y$ such that

Image: A math a math

Conditionals in Markov categories

A Markov category **has conditionals** if for every $f : A \to X \otimes Y$, there exists $f \mid_X : X \otimes A \to Y$ such that

 $\mathbf{Mble}_{\mathcal{G}}$ does **not** have conditionals, since not every \mathbb{P} on $\Omega_1 \times \Omega_2$ is of the form

$$A \times B \mapsto \int_B f(\omega)(B) \mathbb{P}(\mathrm{d}\omega)$$

for some Markov kernel $f: \Omega_1 \to \mathcal{G}\Omega_2$.

• • • • • • • • • • • •

Conditionals in Markov categories

A Markov category **has conditionals** if for every $f : A \to X \otimes Y$, there exists $f \mid_X : X \otimes A \to Y$ such that

 $\mathbf{Mble}_{\mathcal{G}}$ does **not** have conditionals, since not every \mathbb{P} on $\Omega_1 \times \Omega_2$ is of the form

$$A \times B \mapsto \int_B f(\omega)(B) \mathbb{P}(\mathrm{d}\omega)$$

for some Markov kernel $f : \Omega_1 \to \mathcal{G}\Omega_2$. Standard Borel spaces do have conditionals.

Ruben Van Belle

September 2022

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

38 / 40

Kolmogorov products in Markov categories

Let C be a Markov category and let $(X_i)_{i \in I}$ be a collection of objects.

Kolmogorov products in Markov categories

Let \mathcal{C} be a Markov category and let $(X_i)_{i \in I}$ be a collection of objects. Suppose that

• The limit $\lim_{J \subseteq I} \bigotimes_{i \in J} X_i$ over all finite subsets J of I exists,
Kolmogorov products in Markov categories

Let C be a Markov category and let $(X_i)_{i \in I}$ be a collection of objects. Suppose that

- The limit $\lim_{J \subseteq I} \bigotimes_{i \in J} X_j$ over all finite subsets J of I exists,
- and that it is preseved by -Y for all objects Y,

Kolmogorov products in Markov categories

Let C be a Markov category and let $(X_i)_{i \in I}$ be a collection of objects. Suppose that

- The limit $\lim_{J \subseteq I} \bigotimes_{i \in J} X_j$ over all finite subsets J of I exists,
- and that it is preseved by -Y for all objects Y,
- and that

$$\pi_{J'\subseteq J}:\bigotimes_{j\in J}X_j\to\bigotimes_{j\in J'}X_j$$

is *deterministic* for all finites sets $J' \subseteq J$ of I.

Then $\lim_{J\subseteq I} \bigotimes_{i\in J} X_i$ is called the **Kolmogorov product** of $(X_i)_{i\in I}$.

イロト イヨト イヨト

Kolmogorov products in Markov categories

Let C be a Markov category and let $(X_i)_{i \in I}$ be a collection of objects. Suppose that

- The limit $\lim_{J \subseteq I} \bigotimes_{i \in J} X_j$ over all finite subsets J of I exists,
- and that it is preseved by -Y for all objects Y,
- and that

$$\pi_{J'\subseteq J}:\bigotimes_{j\in J}X_j\to\bigotimes_{j\in J'}X_j$$

is *deterministic* for all finites sets $J' \subseteq J$ of I.

Then $\lim_{J\subseteq I} \bigotimes_{j\in J} X_j$ is called the **Kolmogorov product** of $(X_i)_{i\in I}$. In **Mble**_{\mathcal{G}} Kolmogorov products don't exist in general, but countable Kolmogorov products of Standard Borel spaces do exist (*Kolmogorov extension theorem*).

イロト イヨト イヨト

4 A I