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1. Probability spaces

The category Prob:
▶ objects: probability spaces (Ω,F ,P)
▶ morphisms: measure-preserving maps, i.e. measurable maps f : Ω1 → Ω2 such

that P1 ◦ f −1 = P2.

Prob does not have many (co)limits
▶ In general no (co)product or equalizers.
▶ There is no initial object (unbounded randomness).
▶ There is a terminal objects and coequializers exist.
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1. Probability spaces

(many couplings) For P1 and P2 on Ω, there exists many P on Ω2 such that:

P ◦ π−1
1 = P1 and P ◦ π−1

2 = P2.

But we want to talk about the interaction between stochastic events. We
can not do this using probability spaces (e.g. it does not make sense to say
that two probability spaces are independent).

Probability spaces are an important aspect of probability theory, but not the
main objects of interest.

→ Probability theory ̸= measure theory with measures of total mass 1
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2. Random variables

Fix a probability space (Ω,F ,P). Let E be a Polish space, a random variable is a
measurable map X : Ω → E .

bounded randomness

Two random variables X1,X2 : Ω → R, determine a random variable that
describes their interaction:

(X1,X2) : Ω → R2

This does not look very categorical:
▶ The domain and codomain seem of a different type.
▶ What are morphisms between random variables? → order, martingale relation?
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2. Random variables

Fix a probability space (Ω,F ,P).
A random variable X : Ω → E induces a probability measure on E , namely
P ◦ X−1.

We are stricly losing information.

A random variable X : Ω → R can be interpreted as a density function. It
induces a measure on Ω by

A 7→ E[X1A].

This measure is absolutely continuous with respect to P. Every such measure
is of this form (Radon-Nikodym theorem).
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3. Markov kernels

Let Ω1 and Ω2 be a measurable spaces and let GΩ2 be the space of probability
measures on Ω2. A Markov Kernel is a measurable map

f : Ω1 → GΩ2.

For Markov kernels f1 : Ω1 → GΩ2 and f2 : Ω2 → GΩ3, there is a Markov
kernel f : Ω1 → GΩ3 defined by

f (ω)(A) =

∫
Ω2

f2(ω2)(A)f1(ω1)(dω2),

for all ω1 ∈ Ω1 and measurable A ⊆ Ω3.

Describes interactions between different stochastic events.
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3. Markov kernels

For a Markov kernel f : Ω1 → GΩ2 and a probability measure P1 on Ω1, there
is a probability measure P on Ω1 × Ω2 such that

P(A× B) =

∫
A

f (ω)(B)P1(dω),

for all measurable A ⊆ Ω1 and B ⊆ Ω2.

In general, not every probability
measure on Ω1 × Ω2 is of this form (regular conditional probabilities).

Let P be a probability measure on Ω1 × Ω2. The assignment

A 7→ E[1Ω1×A | π−1(F1)]

is P ◦ π−1
1 -almost surely σ-additive.
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Conclusion

Probability spaces

Random variables Markov kernels

Markov chains

P◦X−1

E[X1−]

∫
− f (ω)(−)P(dω)
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An overview of categorical probability theory

Probability monads

Algebras: integration Kleisli categories: Markov kernels

Markov categories
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Where do probability monads come from?
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Lawvere: probabilitstic mappings (1962)

Discusses a category of Markov kernels.

Lawvere introduces the category of probabilistic mappings P:
▶ objects: measurable spaces (Ω,F),
▶ morphisms: Markov kernels (’probabilistic mappings’) f : Ω1 → GΩ2,
▶ composition: composition of Markov kernels

Define Φ : PN → PN by

Φ((Ωn)n)m :=
∏
k<m

Ωk

A discrete stochastic process is a object Ω in PN together with a
morphism f : Φ(Ω) → Ω in PN, i.e. a collection of Markov kernels(

fm :
∏
k<m

Ωk → GΩm

)
m

.
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A morphism of discrete stochastic processes from (Ω1, f 1) to (Ω2, f 2) is a
morphism g : Ω1 → Ω2 in PN such that

g ◦ f = f ′ ◦ Φ(g).

Let Stoch be the category of stochastic processes.

Let N be the monoid of natural numbers, considered as a category. A
discrete Markov process is a functor N → P, i.e. a measurable space Ω
together with a Markov kernel f : Ω → GΩ. Let Mark be the category of
disrete Markov processes, i.e. [N,P].

Question: Does the inclusion Mark → Stoch have adjoints?
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Giry: A categorical approach to probability theory (1982)

In this paper, Giry recognizes Lawvere’s category of probabilistic mappings as the
Kleisli category of a certain monad (Giry monad).

For a measurable space Ω. Let GΩ be the set of probability measures on
Ω. For a measurable subset A ⊆ Ω, we have an evaluation map

evA : GΩ → [0, 1].

GΩ becomes a measurable spaces by endowing it with the σ-algbra generated
by the evaluation maps.

For a measurable map f : Ω1 → Ω2, pushing forward along f defines a
measurable map Gf : GΩ1 → GΩ2.

This gives an endofunctor G : Mble → Mble.
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There is a measurable map µΩ : GGΩ → GΩ:

µΩ(P)(A) :=

∫
λ∈GΩ

λ(A)P(dλ),

for all P ∈ GGΩ and measurable subsets A ⊆ Ω.

We have a map ηΩ : Ω → GΩ:

ηΩ(ω) := δω,

for all ω ∈ Ω.

These form natural transformation µ : GG → G and η : 1Mble → G and
(G, µ, η) forms a monad, the Giry monad.

Lawvere’s category of probabilistic mappings is the Kleisli category of the
Giry monad.

Giry also introduces a monad on Pol, the category of Polish spaces and
continuous functions.
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The Kolmogorov extension problem: Let (Ωi )i∈I be a collection of
measurable spaces. Consider a probability measure PJ on

∏
j∈J Ωj for every

finite set J ⊆ I . Suppose that this collection is consistent.

Does there exist a probability measure P on
∏

i∈I Ωi such that

P ◦ π−1
J = PJ ,

for all finite J ⊆ I?

Answer: sometimes. (Kolmorogov extension problem)

Giry translates this problem as follows:

’Does the functor Mble → MbleG preserve cofiltered limits?’.

Several (technical) conditions are given for which this is the case. As a
corollary the Ionescu-Tulcea theorem is discussed.
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Lawvere expressed discrete Markov processes using P(= MbleG). In
probability theory, we also want to talk about continuous stochastic processes.

For this, Giry introduced random topological actions. Let C be a category
internal to Pol. A random topological action is functor C → PolG satisfying
certain (continuity) conditions.

Ruben Van Belle An overview of categorical probability theory September 2022 18 / 40



Lawvere expressed discrete Markov processes using P(= MbleG). In
probability theory, we also want to talk about continuous stochastic processes.

For this, Giry introduced random topological actions. Let C be a category
internal to Pol. A random topological action is functor C → PolG satisfying
certain (continuity) conditions.

Ruben Van Belle An overview of categorical probability theory September 2022 18 / 40



Probability monads

Algebras: integration Kleisli categories: Markov kernels

Markov categories
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Swirszcz: Monadic functors and convexity (1973)

Studies which monads have the category of convex spaces as algebras.

The category Conv:
▶ objects: convex subsets of vector spaces,
▶ morphims: affine maps

The forgetful functor Conv → Set is not monadic.
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The category CompConv:
▶ objects: compact convex subsets of locally convex topological vector spaces,
▶ morphisms: affine maps

The forgetful functor CompConv → Comp is monadic.

The corresponding monad is the Radon monad, that sends a compact
Hausdorff space X to the space RX of Radon probability measures on X .

The algebra structure on a compact convex space X is given by the
barycenter map b : RX → X ,which sends a Radon probability measure P to
the unique element x ∈ X such that

f (x) =

∫
f dP

for all continuous affine maps f : X → R.
The results uses a monadicity theorem (Linton).
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Probability monads

Algebras: integration Kleisli categories: Markov kernels

Markov categories
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Probability monads

Since then, many variations on the Giry monad have been studied and are referred
to as probability monads.

Distribution monad: A probability monad on Set, sending every set X to

{finitely supported probability measures on X} .

Monads of valuations on topological spaces and locales (Fritz, Perrone,
Vickers)

Monads of subprobabilities/stochastic relations (Panangaden)
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Kantorovich monad (van Breugel, Fritz, Perrone): A probabilty monad on
CMet1, the category of complete metric spaces and 1-Lipschitz maps. A
complete metric space is send to its Kantorovich space

A Radon probability measure P has finite moment if∫
d(x , y)P(dx)P(dy) < ∞.

The Kantorovich space of a complete metric space X is the complete
metric space of all Radon probability measure that have finite moment. The
metric is given by the Wasserstein distance:

dW (P1,P1) = sup

{∫
f dP1 −

∫
f dP2 | f : X → R 1-Lipschitz

}
for all Radon probability measure of finite moment P1 and P2.
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Kantorovich spaces and Wasserstein distances are important in transport
theory and have many useful properties.

E.g. the finitely supported probability measures are dense in the Kantorovich
space.

Many other metric variations: ordered metric spaces, compact metric spaces,
general Lipschitz maps, . . ..

Many probability monads are codensity monads of functor of probability
measures on countable spaces.
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What are the algebras of probability monads?
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The algebras of probability monads

From Swirszcz, we already know that algebras of probability monads should have
a convex structure and the structure map should give a barycenter or centre of
mass.

Example: Define a map α : G[0,∞] → [0,∞] by

P 7→
∫ ∞

0

xP(dx).

▶ α(δx0) =
∫
xδx0(dx) = x0 for all x0 ∈ [0,∞],

▶ For P ∈ G[0,∞],

α(µ(P)) =

∫ ∞

0

xµ(P)(dx) =

∫
λ

∫ ∞

0

xλ(dx)P(dλ) =

∫
λ

α(λ)P(d) = α(P◦α−1)
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▶ Let (Ω,F ,P) be a probability space and let X : Ω → [0,∞] be a random
variable.

E[X ] = α(P ◦ X−1).

→ Random variables should take values in algebras of probability monads.

Distribution monad: The algebras are convex spaces (in the sense of Stone).

▶ Given a convex space X , we can define α
(∑N

n=1 αnδxn

)
=

∑
n=1 αnxn.

▶ Give an algebra A, we define a convex structure by
λa+ (1− λ)b := α(λδa + (1− λ)δb).

Radon monad: The algebras are compact convex subsets of locally convex
topological vector spaces. (Swirszcz)

Kantorovich monad: The algebras are closed convex subsets of Banach
spaces. (Perrone, Fritz)

Giry monad: more difficult! (Dobberkat, Sturtz)
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Perrone: partial evaluations

Conditional expectation: Let X : (Ω,F ,P) → R be an integrable random
variable and let G ⊆ F be a sub-σ-algebra.

E[X | G] : (Ω,G,P |G) → R

is the P-almost surely unique random variable such that

E[E[X | G]1A] = E[X1A],

for all A ∈ G.
Let (A, α) be an algebra of a probability monad T and let P1 and P2 be in
TA. Then P2 is a partial evaluation of P1 if there exists P ∈ TTA such that

P ◦ α−1 = P1 and µA(P) = P2.
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Example: P |G ◦E[X | G]−1 is a partial evaluation of P ◦ X−1.

Moreover, every P1,P2 in TA such that P2 is a partial evaluation of P1 are of
this form for some probability space (Ω,F ,P), sub-σ-algebra G ⊆ F and
random variable X : (Ω,F ,P) → R. (Perrone)
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Kleisli categories of probability monads and Markov categories
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Fritz: Markov categories

Markov categories are monoidal categories, similar to Kleisli categories of
probability monads.

For measurable spaces Ω1 and Ω2, we have morphims

GΩ1 × GΩ2 → G(Ω1 × Ω2)

by sending (P1,P2) to P1 ⊗ P2. This makes the Giry monad into a commutative
monad.
Therefore the Kleisli category of the probability monad inherits the symmetric
(semicartesian) monoidal structure on Mble.
There are similar constructions for other probability monads.
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Let Ω be a measurable space. Every objects has a canonical commutative
comonoid structure:

The comultiplication Ω → G(Ω× Ω) is defined by

ω 7→ δ(ω,ω).

The conuit is the unique map X → G1.

A Markov category is a symmetric monoidal category with a comultiplication
structure on every object, such that the counits form a natural transformation.
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A lot has been written about Markov categories, including versions of the

de Finetti theorem,

certain 0-1 laws,

the ergodic decomposition theorem

in Markov categories (Fritz, Perrone,Moss, . . .).

We will look at some important definitions in concepts in Markov categories:

deterministic morphism,

almost surely equal morphisms

conditionals

Kolmogorov products
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Let C be a Markov category:

A morphism f : A → X is deterministic if

For MbleG , this means

f (a)(A)f (a)(B) = f (a)(A ∩ B)

for all a ∈ A and measurable A,B ⊆ X . In particular,

f (a)(A)2 = f (a)(A)

and therefore f (a)(A) ∈ {0, 1}.
A representable Markov category is a Markov category that is the Kleisli
category of some monad on Cdet, the category with the same objects as C
and deterministic morphisms
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Let m : I → X and f , g : A → X in C, then f and g are m-almost surely
equal if

In MbleG , this means that∫
B

f (a)(A)m(da) =

∫
B

g(a)(A)m(da)

for all a ∈ A and measurable A,B ⊆ X .
Therefore,

f (·)(A) = g(·)(A) m − almost surely.
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Conditionals in Markov categories

A Markov category has conditionals if for every f : A → X ⊗ Y , there exists
f |X : X ⊗ A → Y such that

MbleG does not have conditionals, since not every P on Ω1 × Ω2 is of the form

A× B 7→
∫
B

f (ω)(B)P(dω)

for some Markov kernel f : Ω1 → GΩ2.
Standard Borel spaces do have conditionals.
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Kolmogorov products in Markov categories

Let C be a Markov category and let (Xi )i∈I be a collection of objects.

Suppose
that

The limit limJ⊆I

⊗
j∈J Xj over all finite subsets J of I exists,

and that it is preseved by −Y for all objects Y ,

and that
πJ′⊆J :

⊗
j∈J

Xj →
⊗
j∈J′

Xj

is deterministic for all finites sets J ′ ⊆ J of I .

Then limJ⊆I

⊗
j∈J Xj is called the Kolmogorov product of (Xi )i∈I . In MbleG

Kolmogorov products don’t exist in general, but countable Kolmogorov products
of Standard Borel spaces do exist (Kolmogorov extension theorem).
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Probability monads

Algebras: integration Kleisli categories: Markov kernels

Markov categories
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